\(\int \frac {\tan ^{\frac {3}{2}}(c+d x) (A+B \tan (c+d x))}{a+b \tan (c+d x)} \, dx\) [399]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [F(-1)]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 33, antiderivative size = 297 \[ \int \frac {\tan ^{\frac {3}{2}}(c+d x) (A+B \tan (c+d x))}{a+b \tan (c+d x)} \, dx=-\frac {(b (A-B)-a (A+B)) \arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right ) d}+\frac {(b (A-B)-a (A+B)) \arctan \left (1+\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right ) d}+\frac {2 a^{3/2} (A b-a B) \arctan \left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a}}\right )}{b^{3/2} \left (a^2+b^2\right ) d}+\frac {(a (A-B)+b (A+B)) \log \left (1-\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d}-\frac {(a (A-B)+b (A+B)) \log \left (1+\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d}+\frac {2 B \sqrt {\tan (c+d x)}}{b d} \]

[Out]

2*a^(3/2)*(A*b-B*a)*arctan(b^(1/2)*tan(d*x+c)^(1/2)/a^(1/2))/b^(3/2)/(a^2+b^2)/d+1/2*(b*(A-B)-a*(A+B))*arctan(
-1+2^(1/2)*tan(d*x+c)^(1/2))/(a^2+b^2)/d*2^(1/2)+1/2*(b*(A-B)-a*(A+B))*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))/(a^2
+b^2)/d*2^(1/2)+1/4*(a*(A-B)+b*(A+B))*ln(1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(a^2+b^2)/d*2^(1/2)-1/4*(a*(A-
B)+b*(A+B))*ln(1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(a^2+b^2)/d*2^(1/2)+2*B*tan(d*x+c)^(1/2)/b/d

Rubi [A] (verified)

Time = 1.02 (sec) , antiderivative size = 297, normalized size of antiderivative = 1.00, number of steps used = 15, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.364, Rules used = {3688, 3734, 3615, 1182, 1176, 631, 210, 1179, 642, 3715, 65, 211} \[ \int \frac {\tan ^{\frac {3}{2}}(c+d x) (A+B \tan (c+d x))}{a+b \tan (c+d x)} \, dx=-\frac {(b (A-B)-a (A+B)) \arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d \left (a^2+b^2\right )}+\frac {(b (A-B)-a (A+B)) \arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2} d \left (a^2+b^2\right )}+\frac {(a (A-B)+b (A+B)) \log \left (\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2} d \left (a^2+b^2\right )}-\frac {(a (A-B)+b (A+B)) \log \left (\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2} d \left (a^2+b^2\right )}+\frac {2 a^{3/2} (A b-a B) \arctan \left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a}}\right )}{b^{3/2} d \left (a^2+b^2\right )}+\frac {2 B \sqrt {\tan (c+d x)}}{b d} \]

[In]

Int[(Tan[c + d*x]^(3/2)*(A + B*Tan[c + d*x]))/(a + b*Tan[c + d*x]),x]

[Out]

-(((b*(A - B) - a*(A + B))*ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]])/(Sqrt[2]*(a^2 + b^2)*d)) + ((b*(A - B) - a*
(A + B))*ArcTan[1 + Sqrt[2]*Sqrt[Tan[c + d*x]]])/(Sqrt[2]*(a^2 + b^2)*d) + (2*a^(3/2)*(A*b - a*B)*ArcTan[(Sqrt
[b]*Sqrt[Tan[c + d*x]])/Sqrt[a]])/(b^(3/2)*(a^2 + b^2)*d) + ((a*(A - B) + b*(A + B))*Log[1 - Sqrt[2]*Sqrt[Tan[
c + d*x]] + Tan[c + d*x]])/(2*Sqrt[2]*(a^2 + b^2)*d) - ((a*(A - B) + b*(A + B))*Log[1 + Sqrt[2]*Sqrt[Tan[c + d
*x]] + Tan[c + d*x]])/(2*Sqrt[2]*(a^2 + b^2)*d) + (2*B*Sqrt[Tan[c + d*x]])/(b*d)

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 1182

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[(-a)*c]

Rule 3615

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2/f, Subst[I
nt[(b*c + d*x^2)/(b^2 + x^4), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2,
0] && NeQ[c^2 + d^2, 0]

Rule 3688

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*B*(a + b*Tan[e + f*x])^(m - 1)*((c + d*Tan[e + f*x])^(n + 1)/(d*f
*(m + n))), x] + Dist[1/(d*(m + n)), Int[(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^n*Simp[a^2*A*d*(m +
 n) - b*B*(b*c*(m - 1) + a*d*(n + 1)) + d*(m + n)*(2*a*A*b + B*(a^2 - b^2))*Tan[e + f*x] - (b*B*(b*c - a*d)*(m
 - 1) - b*(A*b + a*B)*d*(m + n))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*
c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 1] && (IntegerQ[m] || IntegersQ[2*m, 2*n]) &&
 !(IGtQ[n, 1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))

Rule 3715

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rule 3734

Int[(((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (
f_.)*(x_)]^2))/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1/(a^2 + b^2), Int[(c + d*Tan[e + f*
x])^n*Simp[b*B + a*(A - C) + (a*B - b*(A - C))*Tan[e + f*x], x], x], x] + Dist[(A*b^2 - a*b*B + a^2*C)/(a^2 +
b^2), Int[(c + d*Tan[e + f*x])^n*((1 + Tan[e + f*x]^2)/(a + b*Tan[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e,
f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] &&  !GtQ[n, 0] &&  !LeQ[n, -
1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 B \sqrt {\tan (c+d x)}}{b d}+\frac {2 \int \frac {-\frac {a B}{2}-\frac {1}{2} b B \tan (c+d x)+\frac {1}{2} (A b-a B) \tan ^2(c+d x)}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))} \, dx}{b} \\ & = \frac {2 B \sqrt {\tan (c+d x)}}{b d}+\frac {2 \int \frac {-\frac {1}{2} b (a A+b B)+\frac {1}{2} b (A b-a B) \tan (c+d x)}{\sqrt {\tan (c+d x)}} \, dx}{b \left (a^2+b^2\right )}+\frac {\left (a^2 (A b-a B)\right ) \int \frac {1+\tan ^2(c+d x)}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))} \, dx}{b \left (a^2+b^2\right )} \\ & = \frac {2 B \sqrt {\tan (c+d x)}}{b d}+\frac {4 \text {Subst}\left (\int \frac {-\frac {1}{2} b (a A+b B)+\frac {1}{2} b (A b-a B) x^2}{1+x^4} \, dx,x,\sqrt {\tan (c+d x)}\right )}{b \left (a^2+b^2\right ) d}+\frac {\left (a^2 (A b-a B)\right ) \text {Subst}\left (\int \frac {1}{\sqrt {x} (a+b x)} \, dx,x,\tan (c+d x)\right )}{b \left (a^2+b^2\right ) d} \\ & = \frac {2 B \sqrt {\tan (c+d x)}}{b d}+\frac {\left (2 a^2 (A b-a B)\right ) \text {Subst}\left (\int \frac {1}{a+b x^2} \, dx,x,\sqrt {\tan (c+d x)}\right )}{b \left (a^2+b^2\right ) d}+\frac {(b (A-B)-a (A+B)) \text {Subst}\left (\int \frac {1+x^2}{1+x^4} \, dx,x,\sqrt {\tan (c+d x)}\right )}{\left (a^2+b^2\right ) d}-\frac {(a (A-B)+b (A+B)) \text {Subst}\left (\int \frac {1-x^2}{1+x^4} \, dx,x,\sqrt {\tan (c+d x)}\right )}{\left (a^2+b^2\right ) d} \\ & = \frac {2 a^{3/2} (A b-a B) \arctan \left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a}}\right )}{b^{3/2} \left (a^2+b^2\right ) d}+\frac {2 B \sqrt {\tan (c+d x)}}{b d}+\frac {(b (A-B)-a (A+B)) \text {Subst}\left (\int \frac {1}{1-\sqrt {2} x+x^2} \, dx,x,\sqrt {\tan (c+d x)}\right )}{2 \left (a^2+b^2\right ) d}+\frac {(b (A-B)-a (A+B)) \text {Subst}\left (\int \frac {1}{1+\sqrt {2} x+x^2} \, dx,x,\sqrt {\tan (c+d x)}\right )}{2 \left (a^2+b^2\right ) d}+\frac {(a (A-B)+b (A+B)) \text {Subst}\left (\int \frac {\sqrt {2}+2 x}{-1-\sqrt {2} x-x^2} \, dx,x,\sqrt {\tan (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d}+\frac {(a (A-B)+b (A+B)) \text {Subst}\left (\int \frac {\sqrt {2}-2 x}{-1+\sqrt {2} x-x^2} \, dx,x,\sqrt {\tan (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d} \\ & = \frac {2 a^{3/2} (A b-a B) \arctan \left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a}}\right )}{b^{3/2} \left (a^2+b^2\right ) d}+\frac {(a (A-B)+b (A+B)) \log \left (1-\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d}-\frac {(a (A-B)+b (A+B)) \log \left (1+\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d}+\frac {2 B \sqrt {\tan (c+d x)}}{b d}+\frac {(b (A-B)-a (A+B)) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right ) d}-\frac {(b (A-B)-a (A+B)) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right ) d} \\ & = -\frac {(b (A-B)-a (A+B)) \arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right ) d}+\frac {(b (A-B)-a (A+B)) \arctan \left (1+\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right ) d}+\frac {2 a^{3/2} (A b-a B) \arctan \left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a}}\right )}{b^{3/2} \left (a^2+b^2\right ) d}+\frac {(a (A-B)+b (A+B)) \log \left (1-\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d}-\frac {(a (A-B)+b (A+B)) \log \left (1+\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d}+\frac {2 B \sqrt {\tan (c+d x)}}{b d} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.37 (sec) , antiderivative size = 165, normalized size of antiderivative = 0.56 \[ \int \frac {\tan ^{\frac {3}{2}}(c+d x) (A+B \tan (c+d x))}{a+b \tan (c+d x)} \, dx=\frac {\sqrt [4]{-1} (a+i b) b^{3/2} (A-i B) \arctan \left ((-1)^{3/4} \sqrt {\tan (c+d x)}\right )-2 a^{3/2} (-A b+a B) \arctan \left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a}}\right )+\sqrt [4]{-1} (a-i b) b^{3/2} (A+i B) \text {arctanh}\left ((-1)^{3/4} \sqrt {\tan (c+d x)}\right )+2 \sqrt {b} \left (a^2+b^2\right ) B \sqrt {\tan (c+d x)}}{b^{3/2} \left (a^2+b^2\right ) d} \]

[In]

Integrate[(Tan[c + d*x]^(3/2)*(A + B*Tan[c + d*x]))/(a + b*Tan[c + d*x]),x]

[Out]

((-1)^(1/4)*(a + I*b)*b^(3/2)*(A - I*B)*ArcTan[(-1)^(3/4)*Sqrt[Tan[c + d*x]]] - 2*a^(3/2)*(-(A*b) + a*B)*ArcTa
n[(Sqrt[b]*Sqrt[Tan[c + d*x]])/Sqrt[a]] + (-1)^(1/4)*(a - I*b)*b^(3/2)*(A + I*B)*ArcTanh[(-1)^(3/4)*Sqrt[Tan[c
 + d*x]]] + 2*Sqrt[b]*(a^2 + b^2)*B*Sqrt[Tan[c + d*x]])/(b^(3/2)*(a^2 + b^2)*d)

Maple [A] (verified)

Time = 0.07 (sec) , antiderivative size = 265, normalized size of antiderivative = 0.89

method result size
derivativedivides \(\frac {\frac {2 \left (\sqrt {\tan }\left (d x +c \right )\right ) B}{b}+\frac {2 a^{2} \left (A b -B a \right ) \arctan \left (\frac {b \left (\sqrt {\tan }\left (d x +c \right )\right )}{\sqrt {a b}}\right )}{b \left (a^{2}+b^{2}\right ) \sqrt {a b}}+\frac {\frac {\left (-a A -B b \right ) \sqrt {2}\, \left (\ln \left (\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}+\frac {\left (A b -B a \right ) \sqrt {2}\, \left (\ln \left (\frac {1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}}{a^{2}+b^{2}}}{d}\) \(265\)
default \(\frac {\frac {2 \left (\sqrt {\tan }\left (d x +c \right )\right ) B}{b}+\frac {2 a^{2} \left (A b -B a \right ) \arctan \left (\frac {b \left (\sqrt {\tan }\left (d x +c \right )\right )}{\sqrt {a b}}\right )}{b \left (a^{2}+b^{2}\right ) \sqrt {a b}}+\frac {\frac {\left (-a A -B b \right ) \sqrt {2}\, \left (\ln \left (\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}+\frac {\left (A b -B a \right ) \sqrt {2}\, \left (\ln \left (\frac {1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}}{a^{2}+b^{2}}}{d}\) \(265\)

[In]

int(tan(d*x+c)^(3/2)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

1/d*(2*tan(d*x+c)^(1/2)*B/b+2/b*a^2*(A*b-B*a)/(a^2+b^2)/(a*b)^(1/2)*arctan(b*tan(d*x+c)^(1/2)/(a*b)^(1/2))+2/(
a^2+b^2)*(1/8*(-A*a-B*b)*2^(1/2)*(ln((1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d
*x+c)))+2*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))+2*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2)))+1/8*(A*b-B*a)*2^(1/2)*(ln(
(1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c)))+2*arctan(1+2^(1/2)*tan(d*x+c)
^(1/2))+2*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2)))))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 3033 vs. \(2 (257) = 514\).

Time = 9.28 (sec) , antiderivative size = 6092, normalized size of antiderivative = 20.51 \[ \int \frac {\tan ^{\frac {3}{2}}(c+d x) (A+B \tan (c+d x))}{a+b \tan (c+d x)} \, dx=\text {Too large to display} \]

[In]

integrate(tan(d*x+c)^(3/2)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c)),x, algorithm="fricas")

[Out]

Too large to include

Sympy [F]

\[ \int \frac {\tan ^{\frac {3}{2}}(c+d x) (A+B \tan (c+d x))}{a+b \tan (c+d x)} \, dx=\int \frac {\left (A + B \tan {\left (c + d x \right )}\right ) \tan ^{\frac {3}{2}}{\left (c + d x \right )}}{a + b \tan {\left (c + d x \right )}}\, dx \]

[In]

integrate(tan(d*x+c)**(3/2)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c)),x)

[Out]

Integral((A + B*tan(c + d*x))*tan(c + d*x)**(3/2)/(a + b*tan(c + d*x)), x)

Maxima [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 234, normalized size of antiderivative = 0.79 \[ \int \frac {\tan ^{\frac {3}{2}}(c+d x) (A+B \tan (c+d x))}{a+b \tan (c+d x)} \, dx=-\frac {\frac {8 \, {\left (B a^{3} - A a^{2} b\right )} \arctan \left (\frac {b \sqrt {\tan \left (d x + c\right )}}{\sqrt {a b}}\right )}{{\left (a^{2} b + b^{3}\right )} \sqrt {a b}} - \frac {8 \, B \sqrt {\tan \left (d x + c\right )}}{b} + \frac {2 \, \sqrt {2} {\left ({\left (A + B\right )} a - {\left (A - B\right )} b\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, \sqrt {\tan \left (d x + c\right )}\right )}\right ) + 2 \, \sqrt {2} {\left ({\left (A + B\right )} a - {\left (A - B\right )} b\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, \sqrt {\tan \left (d x + c\right )}\right )}\right ) + \sqrt {2} {\left ({\left (A - B\right )} a + {\left (A + B\right )} b\right )} \log \left (\sqrt {2} \sqrt {\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right ) - \sqrt {2} {\left ({\left (A - B\right )} a + {\left (A + B\right )} b\right )} \log \left (-\sqrt {2} \sqrt {\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right )}{a^{2} + b^{2}}}{4 \, d} \]

[In]

integrate(tan(d*x+c)^(3/2)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c)),x, algorithm="maxima")

[Out]

-1/4*(8*(B*a^3 - A*a^2*b)*arctan(b*sqrt(tan(d*x + c))/sqrt(a*b))/((a^2*b + b^3)*sqrt(a*b)) - 8*B*sqrt(tan(d*x
+ c))/b + (2*sqrt(2)*((A + B)*a - (A - B)*b)*arctan(1/2*sqrt(2)*(sqrt(2) + 2*sqrt(tan(d*x + c)))) + 2*sqrt(2)*
((A + B)*a - (A - B)*b)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2*sqrt(tan(d*x + c)))) + sqrt(2)*((A - B)*a + (A + B)*b
)*log(sqrt(2)*sqrt(tan(d*x + c)) + tan(d*x + c) + 1) - sqrt(2)*((A - B)*a + (A + B)*b)*log(-sqrt(2)*sqrt(tan(d
*x + c)) + tan(d*x + c) + 1))/(a^2 + b^2))/d

Giac [F(-1)]

Timed out. \[ \int \frac {\tan ^{\frac {3}{2}}(c+d x) (A+B \tan (c+d x))}{a+b \tan (c+d x)} \, dx=\text {Timed out} \]

[In]

integrate(tan(d*x+c)^(3/2)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c)),x, algorithm="giac")

[Out]

Timed out

Mupad [B] (verification not implemented)

Time = 15.09 (sec) , antiderivative size = 15701, normalized size of antiderivative = 52.87 \[ \int \frac {\tan ^{\frac {3}{2}}(c+d x) (A+B \tan (c+d x))}{a+b \tan (c+d x)} \, dx=\text {Too large to display} \]

[In]

int((tan(c + d*x)^(3/2)*(A + B*tan(c + d*x)))/(a + b*tan(c + d*x)),x)

[Out]

atan(((((((32*(4*B*a*b^8*d^4 + 8*B*a^3*b^6*d^4 + 4*B*a^5*b^4*d^4))/(b*d^5) - (32*tan(c + d*x)^(1/2)*(((64*B^4*
a^2*b^2*d^4 - B^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) - 8*B^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 +
2*a^2*b^2*d^4)))^(1/2)*(16*b^10*d^4 + 16*a^2*b^8*d^4 - 16*a^4*b^6*d^4 - 16*a^6*b^4*d^4))/(b*d^4))*(((64*B^4*a^
2*b^2*d^4 - B^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) - 8*B^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*
a^2*b^2*d^4)))^(1/2) + (32*tan(c + d*x)^(1/2)*(4*B^2*a^3*b^5*d^2 + 2*B^2*a^5*b^3*d^2 - 14*B^2*a*b^7*d^2 + 16*B
^2*a^7*b*d^2))/(b*d^4))*(((64*B^4*a^2*b^2*d^4 - B^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) - 8*B^2*
a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2) - (32*(B^3*a^2*b^5*d^2 - 15*B^3*a^4*b^3*d^2 + 12*B^3*
a^6*b*d^2))/(b*d^5))*(((64*B^4*a^2*b^2*d^4 - B^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) - 8*B^2*a*b
*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2) + (32*tan(c + d*x)^(1/2)*(2*B^4*a^6 - B^4*b^6))/(b*d^4))
*(((64*B^4*a^2*b^2*d^4 - B^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) - 8*B^2*a*b*d^2)/(16*(a^4*d^4 +
 b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2)*1i - (((((32*(4*B*a*b^8*d^4 + 8*B*a^3*b^6*d^4 + 4*B*a^5*b^4*d^4))/(b*d^5) +
(32*tan(c + d*x)^(1/2)*(((64*B^4*a^2*b^2*d^4 - B^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) - 8*B^2*a
*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2)*(16*b^10*d^4 + 16*a^2*b^8*d^4 - 16*a^4*b^6*d^4 - 16*a^
6*b^4*d^4))/(b*d^4))*(((64*B^4*a^2*b^2*d^4 - B^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) - 8*B^2*a*b
*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2) - (32*tan(c + d*x)^(1/2)*(4*B^2*a^3*b^5*d^2 + 2*B^2*a^5*
b^3*d^2 - 14*B^2*a*b^7*d^2 + 16*B^2*a^7*b*d^2))/(b*d^4))*(((64*B^4*a^2*b^2*d^4 - B^4*(16*a^4*d^4 + 16*b^4*d^4
+ 32*a^2*b^2*d^4))^(1/2) - 8*B^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2) - (32*(B^3*a^2*b^5*d
^2 - 15*B^3*a^4*b^3*d^2 + 12*B^3*a^6*b*d^2))/(b*d^5))*(((64*B^4*a^2*b^2*d^4 - B^4*(16*a^4*d^4 + 16*b^4*d^4 + 3
2*a^2*b^2*d^4))^(1/2) - 8*B^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2) - (32*tan(c + d*x)^(1/2
)*(2*B^4*a^6 - B^4*b^6))/(b*d^4))*(((64*B^4*a^2*b^2*d^4 - B^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2
) - 8*B^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2)*1i)/((((((32*(4*B*a*b^8*d^4 + 8*B*a^3*b^6*d
^4 + 4*B*a^5*b^4*d^4))/(b*d^5) - (32*tan(c + d*x)^(1/2)*(((64*B^4*a^2*b^2*d^4 - B^4*(16*a^4*d^4 + 16*b^4*d^4 +
 32*a^2*b^2*d^4))^(1/2) - 8*B^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2)*(16*b^10*d^4 + 16*a^2
*b^8*d^4 - 16*a^4*b^6*d^4 - 16*a^6*b^4*d^4))/(b*d^4))*(((64*B^4*a^2*b^2*d^4 - B^4*(16*a^4*d^4 + 16*b^4*d^4 + 3
2*a^2*b^2*d^4))^(1/2) - 8*B^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2) + (32*tan(c + d*x)^(1/2
)*(4*B^2*a^3*b^5*d^2 + 2*B^2*a^5*b^3*d^2 - 14*B^2*a*b^7*d^2 + 16*B^2*a^7*b*d^2))/(b*d^4))*(((64*B^4*a^2*b^2*d^
4 - B^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) - 8*B^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*
d^4)))^(1/2) - (32*(B^3*a^2*b^5*d^2 - 15*B^3*a^4*b^3*d^2 + 12*B^3*a^6*b*d^2))/(b*d^5))*(((64*B^4*a^2*b^2*d^4 -
 B^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) - 8*B^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4
)))^(1/2) + (32*tan(c + d*x)^(1/2)*(2*B^4*a^6 - B^4*b^6))/(b*d^4))*(((64*B^4*a^2*b^2*d^4 - B^4*(16*a^4*d^4 + 1
6*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) - 8*B^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2) + (((((32*
(4*B*a*b^8*d^4 + 8*B*a^3*b^6*d^4 + 4*B*a^5*b^4*d^4))/(b*d^5) + (32*tan(c + d*x)^(1/2)*(((64*B^4*a^2*b^2*d^4 -
B^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) - 8*B^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)
))^(1/2)*(16*b^10*d^4 + 16*a^2*b^8*d^4 - 16*a^4*b^6*d^4 - 16*a^6*b^4*d^4))/(b*d^4))*(((64*B^4*a^2*b^2*d^4 - B^
4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) - 8*B^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))
^(1/2) - (32*tan(c + d*x)^(1/2)*(4*B^2*a^3*b^5*d^2 + 2*B^2*a^5*b^3*d^2 - 14*B^2*a*b^7*d^2 + 16*B^2*a^7*b*d^2))
/(b*d^4))*(((64*B^4*a^2*b^2*d^4 - B^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) - 8*B^2*a*b*d^2)/(16*(
a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2) - (32*(B^3*a^2*b^5*d^2 - 15*B^3*a^4*b^3*d^2 + 12*B^3*a^6*b*d^2))/(b
*d^5))*(((64*B^4*a^2*b^2*d^4 - B^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) - 8*B^2*a*b*d^2)/(16*(a^4
*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2) - (32*tan(c + d*x)^(1/2)*(2*B^4*a^6 - B^4*b^6))/(b*d^4))*(((64*B^4*a^2
*b^2*d^4 - B^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) - 8*B^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a
^2*b^2*d^4)))^(1/2) - (64*(B^5*a^5 - B^5*a^3*b^2))/(b*d^5)))*(((64*B^4*a^2*b^2*d^4 - B^4*(16*a^4*d^4 + 16*b^4*
d^4 + 32*a^2*b^2*d^4))^(1/2) - 8*B^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2)*2i + atan(((((((
32*(4*B*a*b^8*d^4 + 8*B*a^3*b^6*d^4 + 4*B*a^5*b^4*d^4))/(b*d^5) - (32*tan(c + d*x)^(1/2)*(-((64*B^4*a^2*b^2*d^
4 - B^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) + 8*B^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*
d^4)))^(1/2)*(16*b^10*d^4 + 16*a^2*b^8*d^4 - 16*a^4*b^6*d^4 - 16*a^6*b^4*d^4))/(b*d^4))*(-((64*B^4*a^2*b^2*d^4
 - B^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) + 8*B^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d
^4)))^(1/2) + (32*tan(c + d*x)^(1/2)*(4*B^2*a^3*b^5*d^2 + 2*B^2*a^5*b^3*d^2 - 14*B^2*a*b^7*d^2 + 16*B^2*a^7*b*
d^2))/(b*d^4))*(-((64*B^4*a^2*b^2*d^4 - B^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) + 8*B^2*a*b*d^2)
/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2) - (32*(B^3*a^2*b^5*d^2 - 15*B^3*a^4*b^3*d^2 + 12*B^3*a^6*b*d^
2))/(b*d^5))*(-((64*B^4*a^2*b^2*d^4 - B^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) + 8*B^2*a*b*d^2)/(
16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2) + (32*tan(c + d*x)^(1/2)*(2*B^4*a^6 - B^4*b^6))/(b*d^4))*(-((64
*B^4*a^2*b^2*d^4 - B^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) + 8*B^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d
^4 + 2*a^2*b^2*d^4)))^(1/2)*1i - (((((32*(4*B*a*b^8*d^4 + 8*B*a^3*b^6*d^4 + 4*B*a^5*b^4*d^4))/(b*d^5) + (32*ta
n(c + d*x)^(1/2)*(-((64*B^4*a^2*b^2*d^4 - B^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) + 8*B^2*a*b*d^
2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2)*(16*b^10*d^4 + 16*a^2*b^8*d^4 - 16*a^4*b^6*d^4 - 16*a^6*b^4
*d^4))/(b*d^4))*(-((64*B^4*a^2*b^2*d^4 - B^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) + 8*B^2*a*b*d^2
)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2) - (32*tan(c + d*x)^(1/2)*(4*B^2*a^3*b^5*d^2 + 2*B^2*a^5*b^3*
d^2 - 14*B^2*a*b^7*d^2 + 16*B^2*a^7*b*d^2))/(b*d^4))*(-((64*B^4*a^2*b^2*d^4 - B^4*(16*a^4*d^4 + 16*b^4*d^4 + 3
2*a^2*b^2*d^4))^(1/2) + 8*B^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2) - (32*(B^3*a^2*b^5*d^2
- 15*B^3*a^4*b^3*d^2 + 12*B^3*a^6*b*d^2))/(b*d^5))*(-((64*B^4*a^2*b^2*d^4 - B^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*
a^2*b^2*d^4))^(1/2) + 8*B^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2) - (32*tan(c + d*x)^(1/2)*
(2*B^4*a^6 - B^4*b^6))/(b*d^4))*(-((64*B^4*a^2*b^2*d^4 - B^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2)
 + 8*B^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2)*1i)/((((((32*(4*B*a*b^8*d^4 + 8*B*a^3*b^6*d^
4 + 4*B*a^5*b^4*d^4))/(b*d^5) - (32*tan(c + d*x)^(1/2)*(-((64*B^4*a^2*b^2*d^4 - B^4*(16*a^4*d^4 + 16*b^4*d^4 +
 32*a^2*b^2*d^4))^(1/2) + 8*B^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2)*(16*b^10*d^4 + 16*a^2
*b^8*d^4 - 16*a^4*b^6*d^4 - 16*a^6*b^4*d^4))/(b*d^4))*(-((64*B^4*a^2*b^2*d^4 - B^4*(16*a^4*d^4 + 16*b^4*d^4 +
32*a^2*b^2*d^4))^(1/2) + 8*B^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2) + (32*tan(c + d*x)^(1/
2)*(4*B^2*a^3*b^5*d^2 + 2*B^2*a^5*b^3*d^2 - 14*B^2*a*b^7*d^2 + 16*B^2*a^7*b*d^2))/(b*d^4))*(-((64*B^4*a^2*b^2*
d^4 - B^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) + 8*B^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^
2*d^4)))^(1/2) - (32*(B^3*a^2*b^5*d^2 - 15*B^3*a^4*b^3*d^2 + 12*B^3*a^6*b*d^2))/(b*d^5))*(-((64*B^4*a^2*b^2*d^
4 - B^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) + 8*B^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*
d^4)))^(1/2) + (32*tan(c + d*x)^(1/2)*(2*B^4*a^6 - B^4*b^6))/(b*d^4))*(-((64*B^4*a^2*b^2*d^4 - B^4*(16*a^4*d^4
 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) + 8*B^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2) + ((((
(32*(4*B*a*b^8*d^4 + 8*B*a^3*b^6*d^4 + 4*B*a^5*b^4*d^4))/(b*d^5) + (32*tan(c + d*x)^(1/2)*(-((64*B^4*a^2*b^2*d
^4 - B^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) + 8*B^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2
*d^4)))^(1/2)*(16*b^10*d^4 + 16*a^2*b^8*d^4 - 16*a^4*b^6*d^4 - 16*a^6*b^4*d^4))/(b*d^4))*(-((64*B^4*a^2*b^2*d^
4 - B^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) + 8*B^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*
d^4)))^(1/2) - (32*tan(c + d*x)^(1/2)*(4*B^2*a^3*b^5*d^2 + 2*B^2*a^5*b^3*d^2 - 14*B^2*a*b^7*d^2 + 16*B^2*a^7*b
*d^2))/(b*d^4))*(-((64*B^4*a^2*b^2*d^4 - B^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) + 8*B^2*a*b*d^2
)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2) - (32*(B^3*a^2*b^5*d^2 - 15*B^3*a^4*b^3*d^2 + 12*B^3*a^6*b*d
^2))/(b*d^5))*(-((64*B^4*a^2*b^2*d^4 - B^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) + 8*B^2*a*b*d^2)/
(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2) - (32*tan(c + d*x)^(1/2)*(2*B^4*a^6 - B^4*b^6))/(b*d^4))*(-((6
4*B^4*a^2*b^2*d^4 - B^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) + 8*B^2*a*b*d^2)/(16*(a^4*d^4 + b^4*
d^4 + 2*a^2*b^2*d^4)))^(1/2) - (64*(B^5*a^5 - B^5*a^3*b^2))/(b*d^5)))*(-((64*B^4*a^2*b^2*d^4 - B^4*(16*a^4*d^4
 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) + 8*B^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2)*2i - a
tan(((((((32*(4*A*a^2*b^6*d^4 + 8*A*a^4*b^4*d^4 + 4*A*a^6*b^2*d^4))/d^5 - (32*tan(c + d*x)^(1/2)*(-((64*A^4*a^
2*b^2*d^4 - A^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) - 8*A^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*
a^2*b^2*d^4)))^(1/2)*(16*b^9*d^4 + 16*a^2*b^7*d^4 - 16*a^4*b^5*d^4 - 16*a^6*b^3*d^4))/d^4)*(-((64*A^4*a^2*b^2*
d^4 - A^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) - 8*A^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^
2*d^4)))^(1/2) + (32*tan(c + d*x)^(1/2)*(14*A^2*a^5*b^2*d^2 - 4*A^2*a^3*b^4*d^2 + 14*A^2*a*b^6*d^2))/d^4)*(-((
64*A^4*a^2*b^2*d^4 - A^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) - 8*A^2*a*b*d^2)/(16*(a^4*d^4 + b^4
*d^4 + 2*a^2*b^2*d^4)))^(1/2) + (32*(A^3*a*b^5*d^2 - 15*A^3*a^3*b^3*d^2 + 4*A^3*a^5*b*d^2))/d^5)*(-((64*A^4*a^
2*b^2*d^4 - A^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) - 8*A^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*
a^2*b^2*d^4)))^(1/2) - (32*tan(c + d*x)^(1/2)*(A^4*b^5 + 2*A^4*a^4*b))/d^4)*(-((64*A^4*a^2*b^2*d^4 - A^4*(16*a
^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) - 8*A^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2)*
1i - (((((32*(4*A*a^2*b^6*d^4 + 8*A*a^4*b^4*d^4 + 4*A*a^6*b^2*d^4))/d^5 + (32*tan(c + d*x)^(1/2)*(-((64*A^4*a^
2*b^2*d^4 - A^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) - 8*A^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*
a^2*b^2*d^4)))^(1/2)*(16*b^9*d^4 + 16*a^2*b^7*d^4 - 16*a^4*b^5*d^4 - 16*a^6*b^3*d^4))/d^4)*(-((64*A^4*a^2*b^2*
d^4 - A^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) - 8*A^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^
2*d^4)))^(1/2) - (32*tan(c + d*x)^(1/2)*(14*A^2*a^5*b^2*d^2 - 4*A^2*a^3*b^4*d^2 + 14*A^2*a*b^6*d^2))/d^4)*(-((
64*A^4*a^2*b^2*d^4 - A^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) - 8*A^2*a*b*d^2)/(16*(a^4*d^4 + b^4
*d^4 + 2*a^2*b^2*d^4)))^(1/2) + (32*(A^3*a*b^5*d^2 - 15*A^3*a^3*b^3*d^2 + 4*A^3*a^5*b*d^2))/d^5)*(-((64*A^4*a^
2*b^2*d^4 - A^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) - 8*A^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*
a^2*b^2*d^4)))^(1/2) + (32*tan(c + d*x)^(1/2)*(A^4*b^5 + 2*A^4*a^4*b))/d^4)*(-((64*A^4*a^2*b^2*d^4 - A^4*(16*a
^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) - 8*A^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2)*
1i)/((((((32*(4*A*a^2*b^6*d^4 + 8*A*a^4*b^4*d^4 + 4*A*a^6*b^2*d^4))/d^5 - (32*tan(c + d*x)^(1/2)*(-((64*A^4*a^
2*b^2*d^4 - A^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) - 8*A^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*
a^2*b^2*d^4)))^(1/2)*(16*b^9*d^4 + 16*a^2*b^7*d^4 - 16*a^4*b^5*d^4 - 16*a^6*b^3*d^4))/d^4)*(-((64*A^4*a^2*b^2*
d^4 - A^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) - 8*A^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^
2*d^4)))^(1/2) + (32*tan(c + d*x)^(1/2)*(14*A^2*a^5*b^2*d^2 - 4*A^2*a^3*b^4*d^2 + 14*A^2*a*b^6*d^2))/d^4)*(-((
64*A^4*a^2*b^2*d^4 - A^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) - 8*A^2*a*b*d^2)/(16*(a^4*d^4 + b^4
*d^4 + 2*a^2*b^2*d^4)))^(1/2) + (32*(A^3*a*b^5*d^2 - 15*A^3*a^3*b^3*d^2 + 4*A^3*a^5*b*d^2))/d^5)*(-((64*A^4*a^
2*b^2*d^4 - A^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) - 8*A^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*
a^2*b^2*d^4)))^(1/2) - (32*tan(c + d*x)^(1/2)*(A^4*b^5 + 2*A^4*a^4*b))/d^4)*(-((64*A^4*a^2*b^2*d^4 - A^4*(16*a
^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) - 8*A^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2)
+ (((((32*(4*A*a^2*b^6*d^4 + 8*A*a^4*b^4*d^4 + 4*A*a^6*b^2*d^4))/d^5 + (32*tan(c + d*x)^(1/2)*(-((64*A^4*a^2*b
^2*d^4 - A^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) - 8*A^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2
*b^2*d^4)))^(1/2)*(16*b^9*d^4 + 16*a^2*b^7*d^4 - 16*a^4*b^5*d^4 - 16*a^6*b^3*d^4))/d^4)*(-((64*A^4*a^2*b^2*d^4
 - A^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) - 8*A^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d
^4)))^(1/2) - (32*tan(c + d*x)^(1/2)*(14*A^2*a^5*b^2*d^2 - 4*A^2*a^3*b^4*d^2 + 14*A^2*a*b^6*d^2))/d^4)*(-((64*
A^4*a^2*b^2*d^4 - A^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) - 8*A^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^
4 + 2*a^2*b^2*d^4)))^(1/2) + (32*(A^3*a*b^5*d^2 - 15*A^3*a^3*b^3*d^2 + 4*A^3*a^5*b*d^2))/d^5)*(-((64*A^4*a^2*b
^2*d^4 - A^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) - 8*A^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2
*b^2*d^4)))^(1/2) + (32*tan(c + d*x)^(1/2)*(A^4*b^5 + 2*A^4*a^4*b))/d^4)*(-((64*A^4*a^2*b^2*d^4 - A^4*(16*a^4*
d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) - 8*A^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2) + (
64*A^5*a^2*b^2)/d^5))*(-((64*A^4*a^2*b^2*d^4 - A^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) - 8*A^2*a
*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2)*2i - atan(((((((32*(4*A*a^2*b^6*d^4 + 8*A*a^4*b^4*d^4
+ 4*A*a^6*b^2*d^4))/d^5 - (32*tan(c + d*x)^(1/2)*(((64*A^4*a^2*b^2*d^4 - A^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2
*b^2*d^4))^(1/2) + 8*A^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2)*(16*b^9*d^4 + 16*a^2*b^7*d^4
 - 16*a^4*b^5*d^4 - 16*a^6*b^3*d^4))/d^4)*(((64*A^4*a^2*b^2*d^4 - A^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^
4))^(1/2) + 8*A^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2) + (32*tan(c + d*x)^(1/2)*(14*A^2*a^
5*b^2*d^2 - 4*A^2*a^3*b^4*d^2 + 14*A^2*a*b^6*d^2))/d^4)*(((64*A^4*a^2*b^2*d^4 - A^4*(16*a^4*d^4 + 16*b^4*d^4 +
 32*a^2*b^2*d^4))^(1/2) + 8*A^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2) + (32*(A^3*a*b^5*d^2
- 15*A^3*a^3*b^3*d^2 + 4*A^3*a^5*b*d^2))/d^5)*(((64*A^4*a^2*b^2*d^4 - A^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^
2*d^4))^(1/2) + 8*A^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2) - (32*tan(c + d*x)^(1/2)*(A^4*b
^5 + 2*A^4*a^4*b))/d^4)*(((64*A^4*a^2*b^2*d^4 - A^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) + 8*A^2*
a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2)*1i - (((((32*(4*A*a^2*b^6*d^4 + 8*A*a^4*b^4*d^4 + 4*A
*a^6*b^2*d^4))/d^5 + (32*tan(c + d*x)^(1/2)*(((64*A^4*a^2*b^2*d^4 - A^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*
d^4))^(1/2) + 8*A^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2)*(16*b^9*d^4 + 16*a^2*b^7*d^4 - 16
*a^4*b^5*d^4 - 16*a^6*b^3*d^4))/d^4)*(((64*A^4*a^2*b^2*d^4 - A^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(
1/2) + 8*A^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2) - (32*tan(c + d*x)^(1/2)*(14*A^2*a^5*b^2
*d^2 - 4*A^2*a^3*b^4*d^2 + 14*A^2*a*b^6*d^2))/d^4)*(((64*A^4*a^2*b^2*d^4 - A^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a
^2*b^2*d^4))^(1/2) + 8*A^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2) + (32*(A^3*a*b^5*d^2 - 15*
A^3*a^3*b^3*d^2 + 4*A^3*a^5*b*d^2))/d^5)*(((64*A^4*a^2*b^2*d^4 - A^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4
))^(1/2) + 8*A^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2) + (32*tan(c + d*x)^(1/2)*(A^4*b^5 +
2*A^4*a^4*b))/d^4)*(((64*A^4*a^2*b^2*d^4 - A^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) + 8*A^2*a*b*d
^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2)*1i)/((((((32*(4*A*a^2*b^6*d^4 + 8*A*a^4*b^4*d^4 + 4*A*a^6*
b^2*d^4))/d^5 - (32*tan(c + d*x)^(1/2)*(((64*A^4*a^2*b^2*d^4 - A^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))
^(1/2) + 8*A^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2)*(16*b^9*d^4 + 16*a^2*b^7*d^4 - 16*a^4*
b^5*d^4 - 16*a^6*b^3*d^4))/d^4)*(((64*A^4*a^2*b^2*d^4 - A^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2)
+ 8*A^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2) + (32*tan(c + d*x)^(1/2)*(14*A^2*a^5*b^2*d^2
- 4*A^2*a^3*b^4*d^2 + 14*A^2*a*b^6*d^2))/d^4)*(((64*A^4*a^2*b^2*d^4 - A^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^
2*d^4))^(1/2) + 8*A^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2) + (32*(A^3*a*b^5*d^2 - 15*A^3*a
^3*b^3*d^2 + 4*A^3*a^5*b*d^2))/d^5)*(((64*A^4*a^2*b^2*d^4 - A^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1
/2) + 8*A^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2) - (32*tan(c + d*x)^(1/2)*(A^4*b^5 + 2*A^4
*a^4*b))/d^4)*(((64*A^4*a^2*b^2*d^4 - A^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) + 8*A^2*a*b*d^2)/(
16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2) + (((((32*(4*A*a^2*b^6*d^4 + 8*A*a^4*b^4*d^4 + 4*A*a^6*b^2*d^4)
)/d^5 + (32*tan(c + d*x)^(1/2)*(((64*A^4*a^2*b^2*d^4 - A^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) +
 8*A^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2)*(16*b^9*d^4 + 16*a^2*b^7*d^4 - 16*a^4*b^5*d^4
- 16*a^6*b^3*d^4))/d^4)*(((64*A^4*a^2*b^2*d^4 - A^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) + 8*A^2*
a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2) - (32*tan(c + d*x)^(1/2)*(14*A^2*a^5*b^2*d^2 - 4*A^2*
a^3*b^4*d^2 + 14*A^2*a*b^6*d^2))/d^4)*(((64*A^4*a^2*b^2*d^4 - A^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^
(1/2) + 8*A^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2) + (32*(A^3*a*b^5*d^2 - 15*A^3*a^3*b^3*d
^2 + 4*A^3*a^5*b*d^2))/d^5)*(((64*A^4*a^2*b^2*d^4 - A^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) + 8*
A^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2) + (32*tan(c + d*x)^(1/2)*(A^4*b^5 + 2*A^4*a^4*b))
/d^4)*(((64*A^4*a^2*b^2*d^4 - A^4*(16*a^4*d^4 + 16*b^4*d^4 + 32*a^2*b^2*d^4))^(1/2) + 8*A^2*a*b*d^2)/(16*(a^4*
d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2) + (64*A^5*a^2*b^2)/d^5))*(((64*A^4*a^2*b^2*d^4 - A^4*(16*a^4*d^4 + 16*b
^4*d^4 + 32*a^2*b^2*d^4))^(1/2) + 8*A^2*a*b*d^2)/(16*(a^4*d^4 + b^4*d^4 + 2*a^2*b^2*d^4)))^(1/2)*2i - (B*a^5*a
tan(((B*a^5*((32*tan(c + d*x)^(1/2)*(2*B^4*a^6 - B^4*b^6))/(b*d^4) + (B*a^5*((32*(B^3*a^2*b^5*d^2 - 15*B^3*a^4
*b^3*d^2 + 12*B^3*a^6*b*d^2))/(b*d^5) + (B*a^5*((32*tan(c + d*x)^(1/2)*(4*B^2*a^3*b^5*d^2 + 2*B^2*a^5*b^3*d^2
- 14*B^2*a*b^7*d^2 + 16*B^2*a^7*b*d^2))/(b*d^4) - (B*a^5*((32*(4*B*a*b^8*d^4 + 8*B*a^3*b^6*d^4 + 4*B*a^5*b^4*d
^4))/(b*d^5) + (32*B*a^5*tan(c + d*x)^(1/2)*(16*b^10*d^4 + 16*a^2*b^8*d^4 - 16*a^4*b^6*d^4 - 16*a^6*b^4*d^4))/
(b*d^4*(- a^5*b^7*d^2 - 2*a^7*b^5*d^2 - a^9*b^3*d^2)^(1/2))))/(- a^5*b^7*d^2 - 2*a^7*b^5*d^2 - a^9*b^3*d^2)^(1
/2)))/(- a^5*b^7*d^2 - 2*a^7*b^5*d^2 - a^9*b^3*d^2)^(1/2)))/(- a^5*b^7*d^2 - 2*a^7*b^5*d^2 - a^9*b^3*d^2)^(1/2
))*1i)/(- a^5*b^7*d^2 - 2*a^7*b^5*d^2 - a^9*b^3*d^2)^(1/2) + (B*a^5*((32*tan(c + d*x)^(1/2)*(2*B^4*a^6 - B^4*b
^6))/(b*d^4) - (B*a^5*((32*(B^3*a^2*b^5*d^2 - 15*B^3*a^4*b^3*d^2 + 12*B^3*a^6*b*d^2))/(b*d^5) - (B*a^5*((32*ta
n(c + d*x)^(1/2)*(4*B^2*a^3*b^5*d^2 + 2*B^2*a^5*b^3*d^2 - 14*B^2*a*b^7*d^2 + 16*B^2*a^7*b*d^2))/(b*d^4) + (B*a
^5*((32*(4*B*a*b^8*d^4 + 8*B*a^3*b^6*d^4 + 4*B*a^5*b^4*d^4))/(b*d^5) - (32*B*a^5*tan(c + d*x)^(1/2)*(16*b^10*d
^4 + 16*a^2*b^8*d^4 - 16*a^4*b^6*d^4 - 16*a^6*b^4*d^4))/(b*d^4*(- a^5*b^7*d^2 - 2*a^7*b^5*d^2 - a^9*b^3*d^2)^(
1/2))))/(- a^5*b^7*d^2 - 2*a^7*b^5*d^2 - a^9*b^3*d^2)^(1/2)))/(- a^5*b^7*d^2 - 2*a^7*b^5*d^2 - a^9*b^3*d^2)^(1
/2)))/(- a^5*b^7*d^2 - 2*a^7*b^5*d^2 - a^9*b^3*d^2)^(1/2))*1i)/(- a^5*b^7*d^2 - 2*a^7*b^5*d^2 - a^9*b^3*d^2)^(
1/2))/((64*(B^5*a^5 - B^5*a^3*b^2))/(b*d^5) + (B*a^5*((32*tan(c + d*x)^(1/2)*(2*B^4*a^6 - B^4*b^6))/(b*d^4) +
(B*a^5*((32*(B^3*a^2*b^5*d^2 - 15*B^3*a^4*b^3*d^2 + 12*B^3*a^6*b*d^2))/(b*d^5) + (B*a^5*((32*tan(c + d*x)^(1/2
)*(4*B^2*a^3*b^5*d^2 + 2*B^2*a^5*b^3*d^2 - 14*B^2*a*b^7*d^2 + 16*B^2*a^7*b*d^2))/(b*d^4) - (B*a^5*((32*(4*B*a*
b^8*d^4 + 8*B*a^3*b^6*d^4 + 4*B*a^5*b^4*d^4))/(b*d^5) + (32*B*a^5*tan(c + d*x)^(1/2)*(16*b^10*d^4 + 16*a^2*b^8
*d^4 - 16*a^4*b^6*d^4 - 16*a^6*b^4*d^4))/(b*d^4*(- a^5*b^7*d^2 - 2*a^7*b^5*d^2 - a^9*b^3*d^2)^(1/2))))/(- a^5*
b^7*d^2 - 2*a^7*b^5*d^2 - a^9*b^3*d^2)^(1/2)))/(- a^5*b^7*d^2 - 2*a^7*b^5*d^2 - a^9*b^3*d^2)^(1/2)))/(- a^5*b^
7*d^2 - 2*a^7*b^5*d^2 - a^9*b^3*d^2)^(1/2)))/(- a^5*b^7*d^2 - 2*a^7*b^5*d^2 - a^9*b^3*d^2)^(1/2) - (B*a^5*((32
*tan(c + d*x)^(1/2)*(2*B^4*a^6 - B^4*b^6))/(b*d^4) - (B*a^5*((32*(B^3*a^2*b^5*d^2 - 15*B^3*a^4*b^3*d^2 + 12*B^
3*a^6*b*d^2))/(b*d^5) - (B*a^5*((32*tan(c + d*x)^(1/2)*(4*B^2*a^3*b^5*d^2 + 2*B^2*a^5*b^3*d^2 - 14*B^2*a*b^7*d
^2 + 16*B^2*a^7*b*d^2))/(b*d^4) + (B*a^5*((32*(4*B*a*b^8*d^4 + 8*B*a^3*b^6*d^4 + 4*B*a^5*b^4*d^4))/(b*d^5) - (
32*B*a^5*tan(c + d*x)^(1/2)*(16*b^10*d^4 + 16*a^2*b^8*d^4 - 16*a^4*b^6*d^4 - 16*a^6*b^4*d^4))/(b*d^4*(- a^5*b^
7*d^2 - 2*a^7*b^5*d^2 - a^9*b^3*d^2)^(1/2))))/(- a^5*b^7*d^2 - 2*a^7*b^5*d^2 - a^9*b^3*d^2)^(1/2)))/(- a^5*b^7
*d^2 - 2*a^7*b^5*d^2 - a^9*b^3*d^2)^(1/2)))/(- a^5*b^7*d^2 - 2*a^7*b^5*d^2 - a^9*b^3*d^2)^(1/2)))/(- a^5*b^7*d
^2 - 2*a^7*b^5*d^2 - a^9*b^3*d^2)^(1/2)))*2i)/(- a^5*b^7*d^2 - 2*a^7*b^5*d^2 - a^9*b^3*d^2)^(1/2) + (A*a^3*ata
n(((A*a^3*((32*tan(c + d*x)^(1/2)*(A^4*b^5 + 2*A^4*a^4*b))/d^4 - (A*a^3*((32*(A^3*a*b^5*d^2 - 15*A^3*a^3*b^3*d
^2 + 4*A^3*a^5*b*d^2))/d^5 + (A*a^3*((32*tan(c + d*x)^(1/2)*(14*A^2*a^5*b^2*d^2 - 4*A^2*a^3*b^4*d^2 + 14*A^2*a
*b^6*d^2))/d^4 + (A*a^3*((32*(4*A*a^2*b^6*d^4 + 8*A*a^4*b^4*d^4 + 4*A*a^6*b^2*d^4))/d^5 - (32*A*a^3*tan(c + d*
x)^(1/2)*(16*b^9*d^4 + 16*a^2*b^7*d^4 - 16*a^4*b^5*d^4 - 16*a^6*b^3*d^4))/(d^4*(- a^7*b*d^2 - a^3*b^5*d^2 - 2*
a^5*b^3*d^2)^(1/2))))/(- a^7*b*d^2 - a^3*b^5*d^2 - 2*a^5*b^3*d^2)^(1/2)))/(- a^7*b*d^2 - a^3*b^5*d^2 - 2*a^5*b
^3*d^2)^(1/2)))/(- a^7*b*d^2 - a^3*b^5*d^2 - 2*a^5*b^3*d^2)^(1/2))*1i)/(- a^7*b*d^2 - a^3*b^5*d^2 - 2*a^5*b^3*
d^2)^(1/2) + (A*a^3*((32*tan(c + d*x)^(1/2)*(A^4*b^5 + 2*A^4*a^4*b))/d^4 + (A*a^3*((32*(A^3*a*b^5*d^2 - 15*A^3
*a^3*b^3*d^2 + 4*A^3*a^5*b*d^2))/d^5 - (A*a^3*((32*tan(c + d*x)^(1/2)*(14*A^2*a^5*b^2*d^2 - 4*A^2*a^3*b^4*d^2
+ 14*A^2*a*b^6*d^2))/d^4 - (A*a^3*((32*(4*A*a^2*b^6*d^4 + 8*A*a^4*b^4*d^4 + 4*A*a^6*b^2*d^4))/d^5 + (32*A*a^3*
tan(c + d*x)^(1/2)*(16*b^9*d^4 + 16*a^2*b^7*d^4 - 16*a^4*b^5*d^4 - 16*a^6*b^3*d^4))/(d^4*(- a^7*b*d^2 - a^3*b^
5*d^2 - 2*a^5*b^3*d^2)^(1/2))))/(- a^7*b*d^2 - a^3*b^5*d^2 - 2*a^5*b^3*d^2)^(1/2)))/(- a^7*b*d^2 - a^3*b^5*d^2
 - 2*a^5*b^3*d^2)^(1/2)))/(- a^7*b*d^2 - a^3*b^5*d^2 - 2*a^5*b^3*d^2)^(1/2))*1i)/(- a^7*b*d^2 - a^3*b^5*d^2 -
2*a^5*b^3*d^2)^(1/2))/((64*A^5*a^2*b^2)/d^5 - (A*a^3*((32*tan(c + d*x)^(1/2)*(A^4*b^5 + 2*A^4*a^4*b))/d^4 - (A
*a^3*((32*(A^3*a*b^5*d^2 - 15*A^3*a^3*b^3*d^2 + 4*A^3*a^5*b*d^2))/d^5 + (A*a^3*((32*tan(c + d*x)^(1/2)*(14*A^2
*a^5*b^2*d^2 - 4*A^2*a^3*b^4*d^2 + 14*A^2*a*b^6*d^2))/d^4 + (A*a^3*((32*(4*A*a^2*b^6*d^4 + 8*A*a^4*b^4*d^4 + 4
*A*a^6*b^2*d^4))/d^5 - (32*A*a^3*tan(c + d*x)^(1/2)*(16*b^9*d^4 + 16*a^2*b^7*d^4 - 16*a^4*b^5*d^4 - 16*a^6*b^3
*d^4))/(d^4*(- a^7*b*d^2 - a^3*b^5*d^2 - 2*a^5*b^3*d^2)^(1/2))))/(- a^7*b*d^2 - a^3*b^5*d^2 - 2*a^5*b^3*d^2)^(
1/2)))/(- a^7*b*d^2 - a^3*b^5*d^2 - 2*a^5*b^3*d^2)^(1/2)))/(- a^7*b*d^2 - a^3*b^5*d^2 - 2*a^5*b^3*d^2)^(1/2)))
/(- a^7*b*d^2 - a^3*b^5*d^2 - 2*a^5*b^3*d^2)^(1/2) + (A*a^3*((32*tan(c + d*x)^(1/2)*(A^4*b^5 + 2*A^4*a^4*b))/d
^4 + (A*a^3*((32*(A^3*a*b^5*d^2 - 15*A^3*a^3*b^3*d^2 + 4*A^3*a^5*b*d^2))/d^5 - (A*a^3*((32*tan(c + d*x)^(1/2)*
(14*A^2*a^5*b^2*d^2 - 4*A^2*a^3*b^4*d^2 + 14*A^2*a*b^6*d^2))/d^4 - (A*a^3*((32*(4*A*a^2*b^6*d^4 + 8*A*a^4*b^4*
d^4 + 4*A*a^6*b^2*d^4))/d^5 + (32*A*a^3*tan(c + d*x)^(1/2)*(16*b^9*d^4 + 16*a^2*b^7*d^4 - 16*a^4*b^5*d^4 - 16*
a^6*b^3*d^4))/(d^4*(- a^7*b*d^2 - a^3*b^5*d^2 - 2*a^5*b^3*d^2)^(1/2))))/(- a^7*b*d^2 - a^3*b^5*d^2 - 2*a^5*b^3
*d^2)^(1/2)))/(- a^7*b*d^2 - a^3*b^5*d^2 - 2*a^5*b^3*d^2)^(1/2)))/(- a^7*b*d^2 - a^3*b^5*d^2 - 2*a^5*b^3*d^2)^
(1/2)))/(- a^7*b*d^2 - a^3*b^5*d^2 - 2*a^5*b^3*d^2)^(1/2)))*2i)/(- a^7*b*d^2 - a^3*b^5*d^2 - 2*a^5*b^3*d^2)^(1
/2) + (2*B*tan(c + d*x)^(1/2))/(b*d)